On the q-Charlier Multiple Orthogonal Polynomials

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Combinatorics of q-Charlier Polynomials

We describe various aspects of the Al-Salam-Carlitz q-Charlier polynomials. These include combinatorial descriptions of the moments, the orthogonality relation, and the linearization coefficients.

متن کامل

Exceptional Charlier and Hermite orthogonal polynomials

Using Casorati determinants of Charlier polynomials (ca n )n , we construct for each finite set F of positive integers a sequence of polynomials cF n , n ∈ σF , which are eigenfunctions of a second order difference operator, where σF is certain infinite set of nonnegative integers, σF ( N. For suitable finite sets F (we call them admissible sets), we prove that the polynomials cF n , n ∈ σF , a...

متن کامل

A set of orthogonal polynomials, dual to alternative q-Charlier polynomials

The aim of this paper is to derive (by using two operators, representable by a Jacobi matrix) a family of q-orthogonal polynomials, which turn to be dual to alternative q-Charlier polynomials. A discrete orthogonality relation and a three-term recurrence relation for these dual polynomials are explicitly obtained. The completeness property of dual alternative q-Charlier polynomials is also esta...

متن کامل

On some properties of q-Hahn multiple orthogonal polynomials

This contribution deals with multiple orthogonal polynomials of type II with respect to q-discrete measures (q-Hahn measures). In addition, we show that this family of multiple orthogonal polynomials has a lowering operator, and raising operators as well as a Rodrigues type formula. The combination of lowering and raising operators leads to a third order q-difference equation when two orthogona...

متن کامل

THE COMBINATORICS OF THE AL-SALAM-CHIHARA q-CHARLIER POLYNOMIALS

We describe various aspects of the Al-Salam-Chihara q-Charlier polynomials. These include combinatorial descriptions of the polynomials, the moments, the orthogonality relation and a combinatorial proof of Anshelevich’s recent result on the linearization coefficients.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Symmetry, Integrability and Geometry: Methods and Applications

سال: 2015

ISSN: 1815-0659

DOI: 10.3842/sigma.2015.026